lunes, 13 de febrero de 2017

LÒGICA MATEMÀTICA

La lógica matemática permite estudiar el razonamiento en una proposición y validarlo, determina si un argumento es válido o falso mediante la aplicación de valores de verdad, los cuales se encuentran determinados por conectores lógicos, tales como la negación, conjunción, disyunción, disyunción exclusiva, condicional y por ultimo el bicondicional.

EJEMPLOS
A continuación se ejemplifican dos casos en donde se puede validar por medio de la lógica matemática los siguientes razonamientos aplicados al área de odontología. 

1) Pablo es un buen dentista y atiende bien a sus pacientes por lo tanto Pablo tiene muchos clientes y una gran acogida.

p: Pablo es un buen dentista.
q: Pablo atiende bien a sus pacientes.
r:  Pablo tiene muchos clientes.
s: Tiene gran acogida.

( p Ʌ q )  → ( r Ʌ s )


p
Ʌ
q
r
Ʌ
s
1
1
1
1
1
1
1
1
1
1
0
1
0
0
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
1
1
1
0
0
1
1
0
0
1
0
0
1
0
0
1
1
0
0
1
0
0
0
0
0
1
1
1
1
1
0
0
1
1
1
0
0
0
0
1
1
0
0
1
0
0
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
Contingencia 


2) Si la odontología no solo se trata de tener una linda sonrisa, entonces trata de la prevención y el cuidado bucal en general.

a: La odontología solo se trata de tener una linda sonrisa.
b: La odontología trata de la prevención .
c: La odontología trata del cuidado bucal en general.


                                             ⌐a → (b Ʌ c)


­­­­⌐a
b
Ʌ
c
0
1
1
1
1
0
1
1
0
0
0
1
0
0
1
0
1
0
0
0
1
1
1
1
1
1
0
1
0
0
1
0
0
0
1
1
0
0
0
0
 








          
 Contingencia 



 

1 comentario: